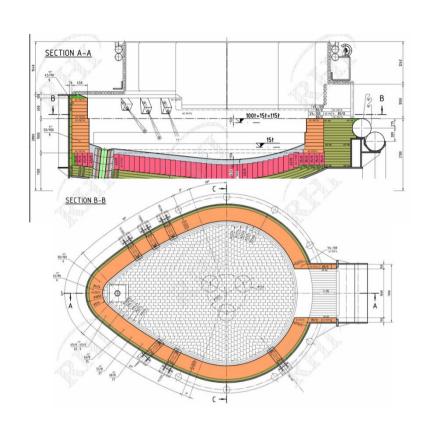
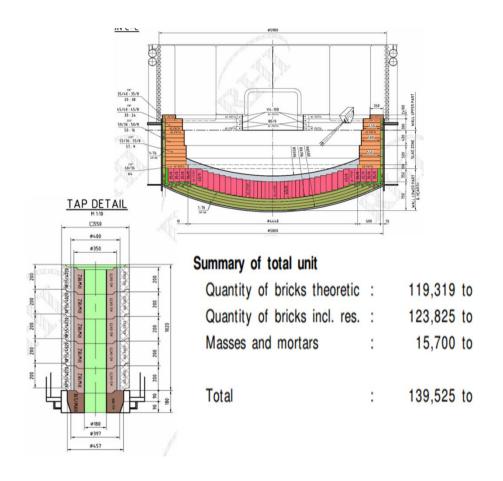
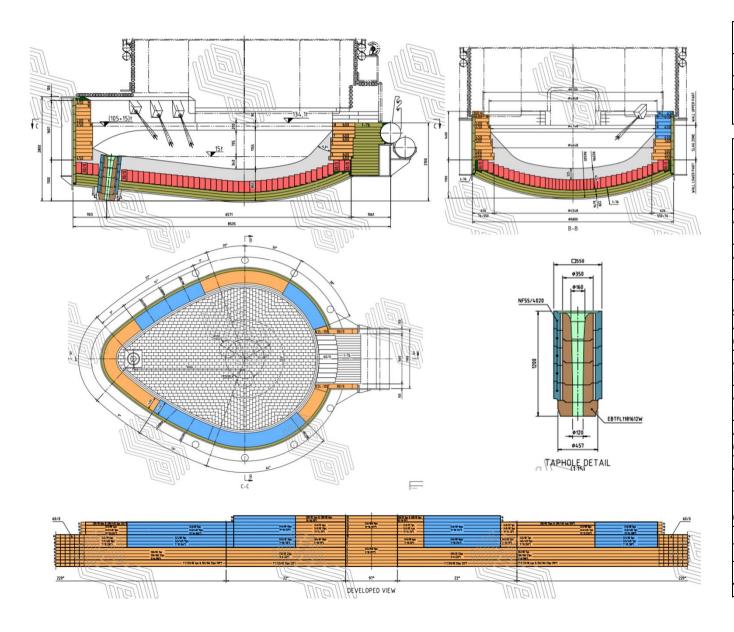
JSW Bhushan Power and Steel


Optimization of EAF Tap weight by Improving the Refractory Design In SMS-1 & Best Operating Practices JSW Odisha

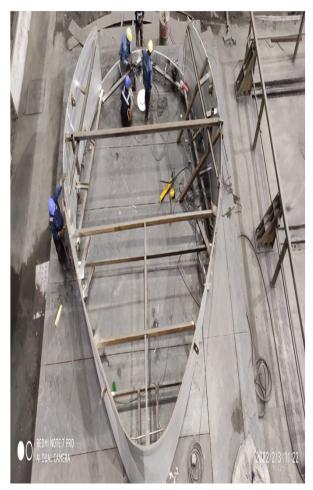

JSWBPSL DATE: 23/09/2022

Modification EAF Lining Pattern


- The Bottom Shell Periphery / Outer dimension totally changed by bending plate at site.
- The Bottom Disc was kept Intact.
- The Refractory of Side wall totally change with Lower thickness and Improved Quality.
- The Bottom Bricks replaced .
- All the Design has been changed in house.

JSW BPSL SMS-1 EAF (OLD DESIGN)

JSW BPSL SMS-1 EAF (NEW DESIGN)



Total Weight	Net [t]	Total
	129.	135.
TOTAL	927	021
	129.	135.
TOTAL	927	021

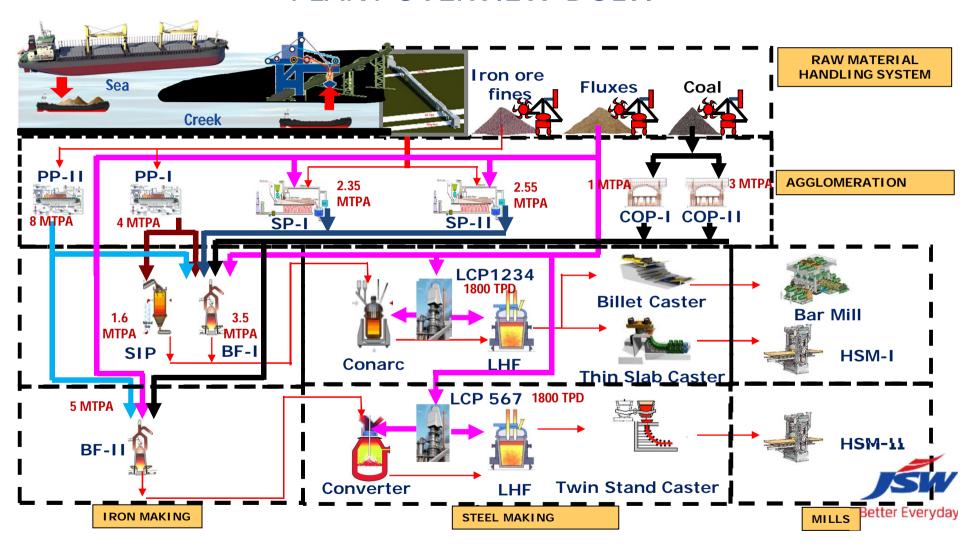
Net	Tota
[t]	[t]
11.4	12.0
23	69
27.7	29.7
97	42
26.3	26.8
65	95
34.3	35.0
80	76
1.67	1.87
5	5
22.7	23.4
50	50
4.60	4.97
0	5
0.30	0.30
8	8
0.53	0.53
0	0
0.10	0.10
0	0
129.	135.
927	021
	11.4 23 27.7 97 26.3 65 34.3 80 1.67 5 22.7 50 4.60 0 0.30 8 0.53 0 0.10 0

PROJECT ACTIVITY

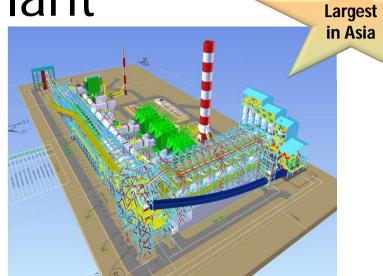
MODIFIED ELECTRIC ARC FURNACE

ACTIVITY

MODIFIED STEEL TEEMING LADLE


THANK YOU

Future of Refractories in Steel Ladle & CDQ


Presented by::
B N Dubey
Nimananda Sahoo
JSW Steel, Dolvi

Better Everyday

PLANT OVERVIEW-DOLVI

Pellet Plant

- **Technology** METSO, USA
- **Commissioned** Feb'14

Pellet Plant 2:: 8 MTPA

- **Technology -** Outotech,Germany
- Commissioned Jan'21

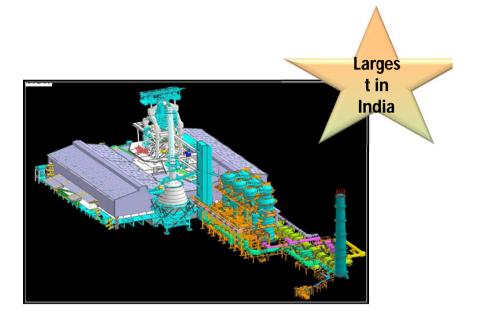
Sinter Plant & SIP

Sinter Plant (2.8 & 2.5)MTPA

- **Tech** MECC China, Outotec Germany
- Commissioned- Dec'05, Feb'16

SIP 1.6 MTPA

- Tech MIDREX, USA, Gas based, Vertical Type
- Commissioned Oct'94
- Record of operating with 100% Iron ore Lump
- DRI production with part Coke Oven Gas



Blast Furnace

Blast Furnace 1:: 3.5 MTPA

- Tech NSENGI, Japan
- Commissioned Mar'16
- Working Volume 4323 m3

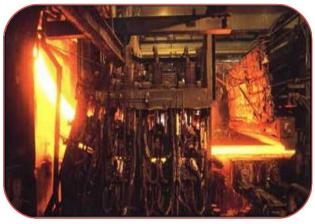
Blast Furnace 2: 4.5 MTPA

- Tech NSENGI, Japan
- Commissioned Oct'21
- Working Volume- 5358 m3

Steel Melting Shop

SMS 1:: 5 MTPA

- Tech SMS Germany/India/UK CONARC Furnaces
- Commissioned-Apr'98
- Furnace Twin shell EAF
- Eccentric Bottom Tapping
- Oxygen Top Lancing & Side lancing


Largest in India

SMS 2:: 5 MTPA

- **Technology** SMS Germany/India/UK
- Caster Type Twin Strand Slab Caster
- Commissioned Oct 2021
- Capacity 2x350 T BOF
- KR Process for desulphurization.
- LF & RH Degassing.
- Large size converter (350 t Capacity)

SMS 1:: Casting & Rolling

Thin Slab Caster (Two Nos.)

- Tech -SMS Siemag
- Commissioned 1998
- Slab Wd 900to1550 mm
- Slab Thk 55 to 65 mm
- Metallurgical Length 9.42m

CSP Mill 3.5 MTPA

- Tech -SMS Siemag
- Commissioned 1998
- Type 6 Stand
- Strip width 900 to 1550 mm
- **Strip Thk** 1- 25mm

SMS 1::Casting & Rolling (Long Product)

Billet Caster 1.5 MTPA

- Tech Danieli , Italy
- Commissioned Mar'16
- Capacity 1.5 MTPA
- Metallurgical L 30m
- Billet Cutting Oxy cutting



Bar Mill 1.5 MTPA

- Tech Danieli, Italy
- Commissioned- Mar'16
- No of Stands 14 nos.
- Reheating furnace capacity 245 TPH
- 8-40 mm dia bar

SMS 2 : Caster

Technology - Primetal Austria/UK/Japan/India

Caster Type - 2 X Twin Strand Slab Caster

Commissioning - Oct 2021

Slab width - 900 to 1650 mm

Cut Slab Length - 4.5 m to 12.0 m

Slab thickness - 220 mm

Casting speed - 1.95 mm (max)

SMS 2:: Hot Rolling

Technology - Primetal Germany/Japan

Commissioned - Oct 2021

Capacity - 5 MTPA

Mill Type - 7 Stand

Strip width - 900 to1650 mm

Strip thickness - 1.5 to 16 mm

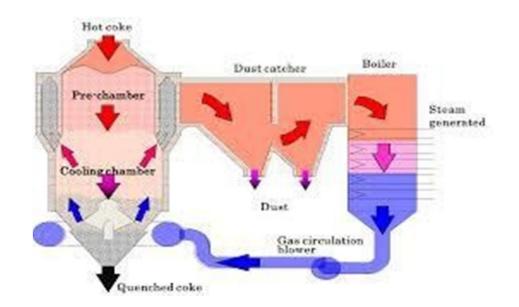
Re-Heating furnaces - 2 X 450 t

Coke Oven

Coke Oven 1:: 1 MTPA

- Tech- MECC Sino Steel, China
- Commissioned 2014
- 2 batteries with 55 ovens each
- Stamp charging, recovery type

Coke Oven 2:: 3 MTPA


- Technology ACRE,China
- Commissioned- 2018-2019
- 4 Nos. of batteries with 62 ovens each
- Stamp charging, recovery type

Future Of Refractories:: Coke Dry Quenching Refractory

compared with conventional wet quenching system, CDQ brings about advantages such as followings

- Reduction of dust emission
- Improvement of coke quality (Moisture Content is very Low)
- Low CO2 emissions than Wet Quenching
- No thermal energy loss as waste heat recovered in boiler to generate Electricity
- Environment-friendly

Problem Facing in CDQ Refractory....

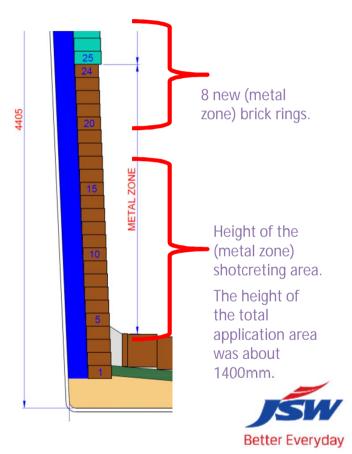
- Damage observed in pillars
- Cracks observed in pillars
- Increase of gaps in the bricks joint in the pillars observed
- Damage observed in some areas of arch

Advantages of using Mullite-SiC bricks...

- High temperature properties like RUL & Creep
- High hot abrasion resistance.
- Wear resistance properties.
- Controlled Thermo-mechanical behavior
- Excellent thermal shock resistance
- Excellent mechanical strength at high temp
- Life can be achieved 2 years

Why Mullite-SiC?

- Passive oxidation forms a protective oxide film which limits attack of the SiC
- Its done in reducing atmosphere
- Its fired at very high temp to form glassy layer
- All the above helps in achieving desired properties required


Future Of Refractories:: STEEL LADLE SHOTCRETING TRIALS (2 NOS).

As per the SOP of JSW Dolvi, rings in Steel Ladle are substituted until a LOT of 110mm minimum is found.

In the picture on the left are clearly visible:

- 1. The new slag line
- 2. The upper bricks of the metal zone substituted because of their residual thickness (< 110mm)

SHOTCRETING APPLICATIONS...

- New slag belt
- New brick rings of the metal zone (installed where the residual thickness was below 110 mm)
- Overlapping of shotcreting application onto the new brick rings

SHOTCRETING MATERIALS...

General information

Type of product	Low Cement Castable		
Type of bond	Hydraulic		
Maximum recommended temperature	1800°C		
Main raw material	Tabular alumina		
Material required (kg/m3) - Shot	3150		
Material required (kg/m3) - Cast	3050		
Maximum grain size (mm)	6		
Water required for installation	7-9% or 5-7%		
Installation method	Shotcreting or Vibrating casting		

Chemical properties according to EN ISO 1927-3, EN ISO 21068-2	Typical (%)	Limit (%)
Al2O3	91,7	min 89,7
Fe2O3	0,1	max 0,4
CaO	2,0	min 1,6
SiO2	0,1	max 2,1
MgO	5,2	min 3,7

Better Every

Steel Ladle Shotcrete – Benefits...

- With 2 repairs 171 campaign life achieved
- Solution to drastic price increase of traditional brick.
- Reduce the dependency on Bricks.
- Manufacturing cost of Bricks is higher than monolithic.
- Supply chain shrinks reduction in Inventory
- Cost decreases as we produce locally the castable
- Use of a Non MgO formulation will provide us with regional capabilities to manufacture and supply
- Solution to weak Metal Zone performance.

THANK YOU

